God Bless the Broken Road: The Movie Go Karts…

August 2016 News Letter
by Robert Gamble (Go Kart Guru)

Well it has happened, it has been accomplished. The hard work building 5 wood go-karts over the past year, has come to an end and fulfilled its purpose. Its purpose to be showcased as part of a wholesome family entertainment movie called God Bless The Broken Road.

The movie was filmed in early April in the tourist town of Manistee, Michigan. The movie folks were great to work with as they made us feel right at home. The director, Harold Cronk even let us sit in and watch the screen as he was crafting this movie. It was amazing to see the color tints, the film effects already present as he and his diligent crew shot this movie. The lighting made a cold dreary day feel like a summer day with the sun in a full sky. Amazing….is the best word for it.

We were called on hand to help with any possible go kart problems, and obviously to make sure the go karts performed as expected. The perfectionist in me was disappointed as the go karts acted up, which as anyone who works with gokarts knows, nothing is perfect. The go kart for example lost a pad on the go kart brake (which should never happen, but it did…). The go kart brakes worked but sounded horrible. But the more I sat back, I realized it added to the realism and the effect of actually having a homemade go-kart!

That being said there was a go-kart race and as far as I could tell (because I haven’t seen any previews yet) came out spectacularly.

In case you are new to the whole Wood Go-Kart Movie Extravaganza, we (the GoKartGuru.com team) were asked to make five wood go karts for a movie called “God Bless The Broken Road.” This movie is about a distraught wife of a recently killed soldier. The daughter and mother are at odds as the mother tries to find the purpose in all the grief and finds her way through a race car driver/mentor. The go-karts come into play as the daughter tries to find relief and inspiration through making and racing gokarts. Because the mother is dirt poor, the daughter finds a way to make a go kart through an online contact…called the GoKartGuru.com which shows her how to fab up and make her own go-kart out of wood.

Harold Cronk and Robert Gamble

Harold Cronk Director of “God Bless The Broken Road” (Left) and Robert Gamble (Right ) GoKartGuru.com on the Set of Joe's Garage. The blue go-kart in the background is the Caleb Coupe.


The Official Ethan of the Ethan Speedster fame posing in the line of go-karts for the movie shoot.

Caleb Coupe Movie Set

The large Caleb Coupe sitting on the side lines at the movie shoot, at Joe's Garage.

Bree's Go Kart

Bree’s go-kart as it was being wheeled around. We did our preliminary inspection after the go karts had been painted.

No 18 Go Kart from God Bless The Broken Road

The “white go kart” number 18 showing the GKG or GoKartGuru emblem.

White Go Kart No 18

Go kart number 18 showing the Go-Kart Guru.com on the side of the go kart. You can also see our sponsors image, the VisionViewPoint.com right above the front wheel on the side as well.

Go Kart Guru Movie Carts

There were 4 smaller gokarts, this shot shows three of them. The Red #13, Pink #3 and White #18 Go Kart

Caleb Coupe Cruisin

One of the film directors taking a cruise on the Caleb Coupe between the racing sequence shoots. The artistic talent on the 10 West Studios set was incredible. The go karts were transformed from shoddy looking pieces of plywood to pieces of art. It was just awe inspiring.

Caleb Coupe Emblem

The larger Caleb Coupe Go Kart #51 and Name Badge.

Caleb Coupe Zooming By

The same director, taking a ride past the race line up.

God Bless The Broken Road Race Line Up

As shot taken from behind the scenes from Joe’s Garage. You can see the go kart line up. The final go-kart #8 can be seen in this shot.

Go Kart Guru making final inspection of the Caleb Coupe kart

When we first arrived Robert Gamble took a final inspection and ride to make sure everything was a go. The sponsor, JDLaserinc.com, for our Lasered metal parts can be seen on the center of the hood. We had could have fabbed ourselves, but asked the laser house to make them to save some time, especially when making 5 go karts!

Thanks to our sponsors:

Vision Viewpoint.com

Every company has its beginnings. The lowly garage with the boy starting from scratch with a beginner’s electronics kit and ending up with a computer… or the fellow who started his engine in a humble kitchen sink (Henry Ford). These are well known true stories. In this case, Go Kart Guru began years ago with a boy who loved go karts and became the man who loved engineering.

Vision View Point Emblem

This engineer, like many before him, had talent and ideas, but needed the keys to effectively unlock the market around him. Vision View Point provided those keys and a vision for sharing values, faith and family fun through the exciting world of go karts. In short, Vision View Point.com is the reason GoKartGuru.com exists.

VisionViewPoint.com is the brain child of Wayne C. Sedlak. Wayne Sedlak is an extraordinary pastor, leader and business man with insights into the world in which we live and the one person who has given me vision and drive, without which, my business would not exist.

Wayne provided me with the skills I needed to put a product in place that fit my expertise in go karts, engineering and business building. I owe a significant amount of gratitude to him for guiding me through these many years. Having him as a sponsor for our go kart project is a great honor for me and for my family as well.

Vision View Point is an online presence that channels the Christian mindset, coupling it with a powerful Christian world view needed for building families, churches, and businesses, each with a vision for sharing the Truth of Jesus Christ throughout the world. It’s much more than sending dedicated missionaries abroad or putting needed soup kitchens in place for the poor, as Vision View Point has taught thousands about a world where the vanity of the world’s glitter and appearances disappear, and true wisdom in applying real life answers from the Word of God, leads many to find the meaning of their lives as they are led to the world’s most gracious Saviour and glorious King, Jesus Christ.

JD LaserInc.com

Jd Laser Professional Metal Fabricator

JD Laser is a company that specializes in lasering and metal part forming. They are a local business that I have worked with professionally for over 15 years. I approached JD laser to fabricate some metal parts for the go kart steering and they offered to provide the parts for free. These parts that they made saved several days of fabricating parts by hand and also made a more clean and aesthetically pleasing product in the end.


The Paint Can Go Kart

I found this old nugget in the Go Kart Guru Arsenal….It takes me back….

Interlude: The Paint Can Go Kart!

The what? That’s right the paint can go kart. My friend Willy came over one day and we decided to go out to the house that they were building down the street and rummage through the “to be burned pile.” There were all sorts of goodies: nails, boards and paint cans.

I don’t know what came over me, but I thought we could make a go kart out of all this stuff. So we busily started constructing the basic two by four go kart layout. Then it came down to wheels. What do we do for wheels? So I took four nails and pounded them into the center of a paint can directly into the two by four axil post. I put four paint cans on the go kart and walla! Instant paint can go kart.

We got it out to the street and Willy sat on it and I started pulling, and pulling and pulling. We got that thing going about 10 miles per hour when all of a sudden the painted cans started coming off one by one. By the time we got to our house we had two front paint cans and no back paint cans! The centers had wallowed out so much that the paint cans fell off, other than they worked beautifully. Willy said that was the funnest and funniest day of his life. I would concur, I can hardly stop laughing about it every time I tell the story!

This is an excerpt from the Go Kart Guru Development Files.

My Go Kart Starter Doesn’t Shut Off?!

Question: “Hi my 150cc go cart after a period of sitting for a while is not working right. I went to start it and it was cranking over ( I’ve already figured out the carburetor is junk and getting a new one) but it kept turning over and over even when I turned the key off. Any help??”


The main problem with go-kart’s sitting is corrosion. Corrosion on all fronts. Anything that is able to corrode will, especially if it sits out in the weather.

So, what can corrode, that counts?

1. Carburetors
2. Cables
3. Engine linkages
4. Pull Starters
5. Electric Starters
6. On/Off Switches
7. Battery Connections
8. Chains
9. Brakes
10. Bearings

That is a pretty tall list, meaning everything on that list needs to be checked.

In your case, the starter is corroded and stays on, because the solenoid linkage is not allowing the spring to return the starter gear. Therefore the starter stays on, because there is an automatic switch that is activated when the starter gear returns. The gear cannot come back, not allowing the switch to trip.

Take the starter off, clean it up good. WD-40 it on all sliding surfaces and then put it back together.

General Rules

As far as general corrosion is concerned a general rule of thumb needs to be understood.  Anything wet generally speaking, whether it is gasoline, water, soda…liquids that can creep easily into cracks generally are caustic and can cause harm to metal surfaces.

The actual agent of damage is galvanic or electrical conduction damage, especially on dissimilar metals.  By definition if two dissimilar metals are in contact, IE aluminum and stainless steel, they will start to corrode.  More specifically, the aluminum will start to pit and corrode or break down turning into a white powder.

To shield the dissimilar metals  from touching each-other various methods are employed.  The simplest is to coat the surfaces with a thin film of fluid such as oil, or grease.  The grease and oil keep the metals from touching each-other, or at least minimize the surface contact, while adding a secondary benefit of lubrication.

Long term protection can be had by coating the parts with zinc, or a good layer of paint.  Depending on the surface and its exposure to abrasion or mechanical wear, paint is a good shield against corrosion.

Gas in a carburetor, because of the ethanol additives, is a terrible nemesis to carbertor parts.  As a result, any weed wacker, lawnmower, go kart carb should be bled dry after seasonal use, because any residual gas will reek havoc to carburetor parts clogging them up, and jamming the butterfly valves.

In this question put before us, the nemesis was probably a go-kart left out in the elements.  The rain, snow mixtures easily acid/rusted and jammed up the starter in  a matter of days.  If you have the option, put a cover, or tarp over your gokart, lawnmower, snowblower, if it must be kept outside.  This will keep the exposed surfaces at least dry-ish and keep the mechanical jam ups and corrosion at bay.


Go Kart Part Tip: Buying Parts at One Place, Beware of Shipping. Looking For a Good Deal.


Invariably it comes down to finding the parts you need for your go kart in a timely manner, and tearing apart a tractor is sometimes just not worth the time, especially when time is limited.

So the temptation is to buy parts for your go kart all in one shot. That can be problematic if you are not careful.
What I first do is look for the specials and see if I can get a good deal on the part I am looking for. Free shipping is usually top on the priority.

Second, I look do a lot of comparison shopping. And with computers that is not too tough. The best way to do it is to make a Bill of Material (BOM) on an excel spreadsheet (go to the following download link for a free BOM listing spreadsheet http://gokartguru.com/downloads.php )

In that spreadsheet I put various prices. In fact I will make three to four different spread sheets for different vendors and then compare the final price. It is easy enough to copy the spreadsheets by copying the whole page. Just name the pages by the vendor name.

The key to shopping is to not make the assumption that you can do a one stop shop. That typically doesn’t work. I use for example the Surplus Center a lot for simple bearings, couplers, chains, sprockets and clutches. They have good pricing and typically the shipping isn’t too bad.

Very often a vendor will say that they have free shipping, but they sock you with a high price to accommodate the shipping. They also will encourage over 100 dollar purchases to get free shipping.

I have been finding that the companies that have expertise in go kart parts want to get rid of these parts and will cut you some good deals. Go kart axles in particular can be found at varying rates and material types. Be picky about the material type on the gokart axle, because often the cheaper axle will be a lower grade material, versus higher grade stress proof material.

When you shop for parts, shop for categories, for example drive system parts which would include: axles, bearings, sprockets and clutches. If you can get one vendor to supply you those parts then you might get a good deal.

Next shop around for rims, tires and wheel bearings. Some go kart suppliers have packages with tires, bearings and hubs included. Be very careful that you do not forget that most rims are not axle friendly and require hubs to bolt onto.
For a decent go kart, I have been finding that buying outright all the parts is going to cost around $500 with all the shipping and handling.

Reputable go kart suppliers are the following (and no I do not get kick backs for doing this…just letting you know…)

Smart Kart Parts
Surplus Center
OMB Warehouse
Northern Tool
Harbour Freight

And one final note when shopping for parts don’t forget the small stuff like keystock, bolts and nuts. Don’t be surprised that bolts and nuts alone can cost close to $25 if bought outright.  Be sure to use those coupons to their best use.  For example Ace Hardware has $5 off coupons, where basically you can get $5 worth of hardware for free. Take advantage of these coupons to extend your budget.

Design Build and Test in 7 Weeks: The Wood Go Kart Movie Extravaganza


Caleb Coupe Wooden Movie Go Kart

Caleb Coupe Wooden Movie Go Kart

A lot of exciting things have  been happening over the past year. We have been so busy it has been difficult to sit down and write a decent letter.  But here it is, the great news we have for you.   The past year has been a roller coaster ride of designing go karts, and then  scrapping the design  and then going back to the drawing board and  redesigning it again.  It all started  with a challenge.  The roller coaster ride…  meeting the challenge.


To cut the story short, we designed and developed a go kart from scratch in four  months.

It all started with a request: “ Can you build us 5 go karts for our movie?!”

The trouble is that the go karts they wanted, didn’t even exist.  We started from scratch and dug deep into our design arsenal and built two awsome fully wood go karts.

The project is known as the Phi-Alpha 15 Caleb Coupe and has proved to be quite a performer.  We have finished  a battery of endurance tests, stress tests, function tests  and peformance tests to tweek the design to where it should be.

You might remember the Phi-Alpha 20  (https://www.youtube.com/watch?v=SjsEqPVQFIk) from two summers back where we were doing some endurance testing and functional tests.   The Phi-Alpha 20, though powerful had some down sides to it, and we refused to release it due to its deficiencies.  However, there were a lot of lessons learned on that go kart and we implemented them into the Phi-Alpha 15 Caleb Coupe and it has proved to not disappoint.


The basic platform is a monocoque hybrid complete with live axle, disc brake, jack drive, Ackermann steering and cushy seat.  Just because the unit is wood does not mean it is not durable, or too lightweight.   It has all the gumph of a metal frame go kart and has proved  to be quite a contender.

The plans are available complete with Bills of Material list, detailed prints and suggested pricing for each component.  Along with close to 100 steps of instructions to guide you through the building process.  There are two welded components, the steering shaft and the brake assembly.  The rest of the unit is two by fours and plywood along with obviously purchase components such as bearings, axles, chains and clutches.

To get your Phi-Alpha 15 Caleb Coupe go kart plans go to the following link:



What It is Like Being The Go Kart Guru


Often times I explain to people the business I try to operate called the Go Kart Guru.com.  People often jump to the conclusion that I must have a cushy life seeing I have 5 go karts that I may be working on, or have in development.   I don’t have a cushy life by any means, if anything I put a lot of effort in making go karts that people would like and most especially afford.

The Go Kart Guru.com has an aim and that is to put into the hands of the everyday person the ability to fabricate a go kart from straight forward materials, without busting your budget.  I have personally made go karts with less than 200 dollars; sometimes even less than 100 dollars, depending on the gokart.

I take great pains into restricting myself on some of my go karts in the realm of expense and complexity.  For example on the Phi-Alpha 20 the go kart sat for a year until I could figure out the steering that was not complicated,  obstructive, and expensive.   Also the restrictions on how much welding needed to take place always puts a damper on the design too.  There were times I was wondering if it was even possible to construct a completely wood go kart with minor metal components.

There have been times that I have been working on the go kart and the design solution was so unique, yet simple that my sons have mentioned…you need to write an article about that.  There are just so many things that I do intuitively that may not come to most people as simple and as solutions.  So being the Go Kart Guru can be a little frustrating because there is a wealth of go kart information and tricks that I need to start tapping out and letting people know about.

Also, restraining myself so that I do not make it too complicated is always a chore.  “Make it simple stupid.”  Or as I like to say “It needs to be worked on and come apart.”  Most of a design is about wrestling with the actual disassembly or the “being worked on phase.”  Nothing is perfect and needs to be accessible for maintenance or replacement.

There is also the admitting defeat in a design.  It is tough to realize you spent a good two weeks on something that is just not panning out.  That is tough to swallow and being the go kart guru sometimes you consciously “gamble” on a design strategy knowing it could fail.  For example, the two seater go kart that I started 5 years ago stumbled and fell into a steering design trap.  To put it bluntly, the steering is awful and needs to be torn out.   Camber, caster is  to be thrown to the wind at this point.  The hidden design frustrations in steering is the amount of force required to actuate steering.  There is a reason for example why cars have powersteering, riding tractors have reduction and so forth, and these hard knocks can really smack you up side the head if you wander into territory unknown.

The steering performs as intended, making the go kart corner on rails, but at the cost of steering effort, and that is the hidden nemesis that makes the steering awful.

So being the Go Kart Guru is not all that is may be cracked up to be.  As the go kart guru, I try to put myself into your shoes.  What would you run into?  Would you be able to make this?  Would you really be able to get tires for free, and engine for free?  Could you really make a vertical engine work on a go kart as we show in our vertical engine course, or are we just blowing smoke?

That is one major reason that we have a money back guarantee is  to show you how serious we are about our products.  We have go kart plans, ebooks and videos that try to get you into the go kart fab world before you start falling into deep traps of forgotten hood, where the go kart solutions just seem to be way beyond your capabilities.

Go Karts take work, they take mechanical knowledge, but they also take patience.  They take “step- back from the table go into the house and think on it”  patience.  I know…been there…done that.  Everyone of our designs has those moments.  Our plans and books help to take the school of hard-knocks out of your lap and into ours.  Learn from our mistakes and you can make winners.


Robert Gamble


Can I Make a Small Engine Power My Go Kart?

Often the question arises “Can I make this 3.5 hp engine make my go kart run?” The answer is, as Archimedes said “If you give me a long enough lever I can move the world.” And he was right, the longer the lever, the easier it is to move an object.

The same goes for drive systems. The steeper the ratio, the easier the engine has to work, and the more likely the go kart will move. The down side is the slower the go kart will go.

That is why in cars they have what is called “Grandma gear” or “1st gear” because the car will go real slow, but be able to pull stumps out of the ground.

On a go kart the way to get the ratio steeper is to increase the driven gear on the drive system. There becomes an obstacle in that the driven gear on the rear axle can become larger than the rear wheel and then actually become a “wheel” itself digging into the ground.

The way to get around this is to break up the rear sprocket into multiple sprockets. We call that a jackshaft.  Jackshaft arrangements are used frequently on go karts that are either under powered or are extra heavy.

The go kart plans sold on the GoKartGuru.com web page do not require a jackshaft for normal flat surface driving, however, if the go kart needs to climb hills frequently a jackshaft is required for hills over 10 degrees in slope.

The Go Kart Building 203 Course goes into extensive detail about how to maximize your drive train so that you can get the maximum performance out of the engine size that you have selected for your gokart. In this course charts are first used to demonstrate the overall performance curves for the weight/hp selection that you have selected.

If you want quick answers there is a program that is included with the e-book package, that gives suggestions about what you can do to change the overall performance of your go kart drive line.

Bottom line is that there is an optimum drive system that will work for your go kart, despite the small horsepower that you might have available to you. You make the sprocket large enough, or the ratio steep enough a small engine can move a large load.

The Best Kept Secret About How to Use Tractor Wheels On Your Go Kart

A riding lawnmower tractor is one of the best resources or goldmines for sourcing parts for a homemade go kart. There are so many goodies on the riding lawnmower that it just makes it the best bargain around for fabricating your own go kart. Typically a riding lawnmower can be had for 50 dollars because the owner just wants to be rid of it.
However, and this is a big however, there are some secrets about how to use the parts that just aren’t discussed because most don’t know what the solutions are.

This article is about taking a riding lawnmower rear wheel and mounting it to a “live-axle” on a standard go kart. You might be inclined to just close your laptop and stop reading this article because “This is just a no-brainer right? I mean, anybody with half a brain knows you just slip the go kart axle into the hub of the riding lawnmower wheel and walla…. (viola actually)…you have an instant cheap go kart wheel.”

Uh….No. Have fun with that…

As I said this article is about mounting that rear axle to the riding lawnmower wheel, so let’s get to it.
There are two types of axles on garden tractors: the splined versions and the ¾ shaft keyed versions. The lower cost riding lawnmowers invariably have the “¾ shaft keyed versions.” We will call them the TQSV (Three Quarter Shaft Versions) for short from now on. Just as an FYI, the splined versions are more difficult to use and require custom parts. That’s where 3d printer and a friend who can do casting comes in….but that for another article.

The conundrum with the TQSV hub is that it is ¾” in diameter and gokart shafts are 1 inch in diameter. There is a reason why the axles on a go kart are 1” and in some cases larger, it is because they will bend if they are any thinner. For example we have a “Will our go kart shaft bend page” on our web site that helps calculate the amount of distance from the frame a wheel can be before it will bend the axle on the go kart. A shaft will bend like a diving board if hanging out too far from the frame.

The reason I say it is a conundrum is that the wheel/hub will not fit neatly onto the go kart shaft.

The axle will just spin in the hub, because the key-way is in the one inch section of the go kart axle. The problem is how to connect the axle to the riding lawnmower wheel?

The wheel can be slipped over the threaded section of the axle, but there is nothing to make the axle and hub connected, or solid.
There are three issues with the wheel and axle assembly that the rear wheel hub will have:


1. Locking the hub to the axle in a rotation (translation: making the axle transmit power to the wheel, otherwise it will just spin.)
2. Locking the hub on to the shaft in a horizontal or along the shaft (in plain English, keeping the hub on the shaft so the wheel doesn’t fall off)
3. Removability: the wheel should be able to be removed for service.

The quick and easy solution would be to weld the rear wheel onto the axle; however that poses some very significant maintenance issues:

1. Removing the axle,
2. Placing chain on the sprockets,
3. Placing bearings on the shaft,
4. Placing the assembly into the go kart….just to name a few.

Welding the axle to the wheel hub is possible for one side, but not for the other side of the axle.
The answer lies in a weld on coupler. The coupler will provide the keyway necessary for transmitting torque to the wheel and then a cross bolt across the coupler will keep the wheel on the axle.

To accomplish this, place the coupler and the wheel onto the axle. The axle will act as a “weld fixture” holding the coupler in place. Prepare the surfaces of the hub and the coupler and then weld the hub and coupler together.
To keep the coupler from sliding off of the axle, a cross bolt will need to be drilled across the coupler. The size of ¼ -20 grade 5 or grade 8 bolt should be used (do not use grade 2!). Do not make the mistake of having the bolt transmit torque. The axle can deliver enough power to shear off the bolt, so the keyway must be used to transmit torque. The cross bolt is only designed to keep the wheel on the axle; this same concept is used on riding lawnmowers frequently.
The importance of the keyed coupler cannot be stressed enough, because this is where the power can be transmitted to the rear wheel. The shear area is much greater on a key than on a cross bolt. A cross bolt has its uses, but more for keeping nuts from turning, or for applications where side loads are minimal, such as retaining a pivot pin.

So to recap, the riding lawnmower rear hub can be retained using a weld on coupler that transmits the torque through the keyway and is retained in place with a cross bolt.

The Coupler is welded to the rear drive hub and then a cross bolt is used to keep the wheel from falling off the axle. A grade 5 bolt or greater is used.

As a side note if there is enough shaft exposed outside of the hub of the riding tractor wheel, then a nut can be used. If using a nut it is essential that the nut cannot loosen. Don’t make the mistake that a large ¾” nut is not going to loosen. It will loosen, with acceleration and braking, the axle hub transmits tightening and loosening torque on the nut and it will follow Murphy’s law and loosen. To keep the nut from loosening (lock-tight WILL NOT WORK), either double nut (jamming a nut on the tightening nut), or castle nut (a special nut that has openings for a cotter pin) the axle hub mount.

A double nut application to keep the wheel from falling off. A double nut acts likes jam nut that can be loosened when needed. It has superior holding power over conventional jam or nylock nuts.

Limitation of Liability Statement:

The Go Kart Guru assumes that you have a full working knowledge of mechanics, and are at least 18 years of age, or accompanied by adult supervision to aid in the project development.

Under no circumstances, including, but not limited to negligence, shall the Go Kart Guru (Gamble Industries LLC) or its affiliates be liable for any direct, indirect, incidental, special or consequential damages that result from the use of, or the inability to use, materials presented here. You specifically acknowledge and agree that the Go Kart Guru is not liable for any improper, welding, material selection, tubing selection, mechanical layouts suggested in any correspondence whether emails, or materials such as plans or web site materials.

The Solidoodle 3-D Printer Go Kart Guru Product Review: Best Bang For Your Buck!

I have been actively shopping for a low cost 3-d printer for almost 2 years now. At first when I was looking all that was available were wooden versions and semi plastic versions. I have been looking at reviews and examining the best possible values out there.

My consensus: a Solidoodle. My concern when looking at the lowest cost versions out there were they are made out of wood, and had an x-y mechanisms that to me was not solid enough for good consistent parts. The reviews on-line tallied that up too.

I will admit that when we opened the box and started trying to make parts, that I went to bed upset and a little disappointed. The problem was two fold:

– First we couldn’t get parts to stick to the bed
– Second the machine was not making round parts, and they were not even to scale properly.

After about a week of futzing, my boys and I figured out the sweet spot for making parts. It really is simple:

1.) Take off the special Kapton tape and use a slurry of ABS and Acetone. Basically you make your own bed that is as thin as you want it to be and adheres magnificiently to the aluminum bed. Also it does not appear you need to run the heated bed, but it doesn’t hurt.
2.) Run the parts on a lower setting per layer. The unit automatically slows down and that takes care of the out of round parts. Also we reset the y axis, but we are not sure if that was needed.

Now the machine is fantastic. I love the way it is made, the durable nature of it makes it stay in line (or square). We have run the machine for about 10 to 15 hours now and it still is making good parts.

The biggest problem that I can see with the 3-d printers out there is that the parts won’t stick to the platform, due to the adhesion issues. Typically a raft will be put down, but that too comes up because it is relying on a thermal/mechanical adhesion.

The problem is fundamental. When ever you use glues on two opposing surfaces to get the best adhesion they recommend roughing the surface up. The reason for this is to give the glue something to bite into. Glue relies on micro-valleys in the material to make a mechanical bond.

The same applies with 3-d printer bases. A liquid will penetrate better into a surface, than a piece of hot gooey plastic. In fact, the thinner ABS-Acetone material acts like a paint and uses capillary action to suck the mixture into the surface of 3-d printer base. We had such a good adhesion at first that the Kapton tape came up. I think also that the Kapton tape probably dissolves eventually in the acetone as well. Not sure the rationale behind the Kapton tape, because we could not get anything to stick to it.

The ABS-Acetone mixture however, is just the answer. It acts like a micro layer of plastic that gives the part something to melt to. Essentially the whole plate when coated with the ABS-slurry becomes a raft and holds the parts down and keeps it from lifting. (You will discover a third problem with parts is that they want to peal up due to the shrinkage of the material. I am not sure if the ABS-Slurry will entirely cure this, especially with larger platforms, but it will definitely keep the part bonded to the base better.)

The software for the Solidoodle actually works quite well. I am a techy type guy so it took a little playing with it to discover what it can do. Any program really just requires working with it. They have on line videos and those were helpful. So be sure to avail yourself of their videos right away. If I were to make a comment about improving the Solidoodle it would be that the instructions should be a little bit more full. Not that they were insufficient, but to use the software perhaps a video link or something.

A 3-d printer opens up a whole new dimension that was not possible with our CNC mill. The CNC mill requires a lot of thought on how you are going to place the part, what tools you are going to use to rough out the part and so on. It also makes a ton of noise and eats up a lot of motor electricity. When I am working on getting a rough idea about a prototype and whether it works, the 3-d printer will get it done in a few hours at a click of a mouse.

The other day, I woke up and started the Solidoodle. Let the unit warm up and had breakfast. Came down after breakfast, and loaded up a model and went to work. The kids later that day took the model off and gave me a report one what happened with the part.

The other day for example we designed a potential product in one day. Outside our house is a ground post that the house is hooked too. It is first off an eyesore and two a potential hazard. I asked my 13 year old son to model it up on our 3-d software (Alibre) and then show it to me. We sat together on the couch and refined the model. Then we ran it just before bed. By 11:00 the model was done.

The next morning we tried it out, painted it and put it in place. Now we can refine the model to make it stronger if need be. We designed and developed a product in two days. Without a 3-d printer prototyping it could potentially have cost thousands of dollars, with little tweaking available.
So needless to say, I am pleased with the printer and most especially how much value I received. The Solidoodle is a 500 dollar unit (plus shipping). We opted for the unit with the heated table. In retrospect I still would get the heated table, I think it does help keep parts on the table, even with the ABS-Slurry.

If you are a family with kids who love to tinker, a good investment would be some 3-d software and a 3-d printer. Oh and by the way I was going to make my own unit, but after looking at the Solidoodle and the complexity of it, I would suggest just buying a unit, the headaches you will save might be worth the 500 dollars after all. To me the object is making parts….so that’s what we are doing. Maybe we will print out parts for our next machine….hmmmm.

Don’t Spend an Arm and a Leg on Nuts and Bolts!

I will be honest, the last thing I think about for the Go Kart is nuts and bolts.  Nuts and bolts are cheap and really should not be something to worry about…right?!   Uh….Wrong!

I almost fainted the other day when I was putting together our wood gokart.  We needed some nuts and bolts and I thought we could just run to the local hardware store, use my 5 dollar off coupon and end up with some free hardware.

Wow, by the time I walked out the door, even with the coupon the cost for the bolts, nuts and washers was almost 20 dollars!

I was having a hard time coughing up the money, even then, but I thought I could use this as an opportunity to compare.  We were out, so I thought I would shop elsewhere and see how much different if at all the prices for nuts, bolts and washers was going to end up being.

First of all nuts, bolts and washers are not all the same grade.  These are the types of grades that you can get at hardware stores:

-Grade 2

-Grade 5

-Grade 8

Okay, what do these grades mean?  Quite simply the higher the number the better.  However, for sake of clarity I will spell out the differences:

–          Grade 2

Grade 2 bolts are basically as step above construction grade steel rated at 55000 psi.  You will find that grade 2 bolts are very prone to stripping threads, bending and shearing off.

–          Grade 5

Grade 5 bolts are rated at approximately 85000 psi strength.  They are what I would call the minimum grade that would be acceptable for any type of equipment, whether it be lawnmowers, snowthrowers, tractors and go karts.  It is pretty tough to strip the threads on a grade 5 bolt.

–          Grade 8

Grade 8 bolts are rated at 120,000 psi strength.  These style bolts would be on the upper end of strength, and if given the chance and the price comparison, I will choose a grade 8 over a grade 5 depending on the application.


Where to use grade 5 versus grade 8 bolts:

  • -.625 axel spindles for steering mechanisms: grade 8
  • -Steering hardware: grade 8 (rod end bolts and steering assembly mount bolts)
  • -Engine mount  bolts: grade 5 or grade 8
  • – Manifold mount bolts: grade 5 or grade 8
  • -Bearing retention bolts: grade 5 or grade 8
  • -Chain Tensioner – grade 5 or grade 8
  • – Brake Mount bolts –grade 5 or grade 8
  • -Steering Wheel mount bolts – grade 8

Shopping for bolts should not be a spurt of the moment thing, where you have to run off the hardware store just to assemble the go kart.  A pretty comprehensive list should be put together so that you can get the project going, plus you can always over buy and return later.  Keep your bolts in the bag you bought them in, plus keep the receipt handy so that returning is not so painful.

By the way, the washers, nuts and bolts that I bought at the hardware store, I returned because I was able to find them at almost 1/3 the cost at a different store that sold their hardware by weight versus by cost per bolt and nut.

You will always get a better deal if you can buy them by weight.  Sometimes the one store may be closer than the other and that may be the convenience factor, that my cause you to spend 10 bucks more.  I try to save money, because I can always use it somewhere else on the go kart.

Be very leery of preassembled hardware kits, because typically they will not have the quantity you need and also they will be of low, low quality grade 2 bolts not really useful for any dependable project.

Be aware also, that the higher the grade, the higher the cost.  The best value, is the grade 5 bolts because they can be pretty much used anywhere on the go kart.  They have high strength and comparable cost to even a grade 2 bolt.  It is well worth it to spend the extra money on grade 5.

To sum it all up, buy grade 8 if cost is no option.  Buy grade 5 if you are on a limited budget.  Also, buy your nuts, bolts and washers in bulk or by weight not by per piece unit pricing.  You will be amazed at how much you can save just by buying them in bulk or by weight.


Copyright ©2008 - 2018 Gamble Industries LLC - All Rights Reserved